Perancangan Sistem Informasi Pelayanan Pengaduan Masyarakat Dinas Pemerintah Kecamatan Besuki

Authors

  • Kafil Albab Ahsan Ramadhani Universitas Ibrahimy Author
  • A. Hamdani Universitas Ibrahimy Author

Keywords:

sistem informasi, pelayanan publik , pengaduan masyarakat, kecamatan besuki, tata kelola pemerintahan

Abstract

Penelitian ini menganalisis perancangan sistem layanan pengaduan masyarakat di Kantor Pemerintah Kecamatan Besuki, dengan mempertimbangkan tantangan penanganan pengaduan yang efektif dan efisien yang dapat mengurangi kepercayaan publik dan menghambat peningkatan layanan. Penelitian ini bertujuan merancang sistem yang mengoptimalkan penerimaan, pengelolaan, dan penyelesaian pengaduan secara terstruktur dan transparan. Dengan menggunakan metode deskriptif kualitatif yang mencakup observasi, wawancara, dan analisis dokumen, perancangan sistem yang diusulkan menekankan kemudahan akses, digitalisasi alur kerja, pelacakan status, dan integrasi data untuk mendukung pengambilan keputusan. Diharapkan perancangan ini dapat memberikan solusi konkret bagi Kantor Pemerintah Kabupaten Besuki dalam meningkatkan kualitas layanan, mempercepat respons pengaduan, serta membangun akuntabilitas dan transparansi, sehingga tercipta model sistem pengaduan yang adaptif dan responsif sebagai dasar pengembangan di instansi lain.

Downloads

Download data is not yet available.

References

[1] M. Sigala, A. Beer, L. Hodgson, and A. O’Connor, Big Data for Measuring the Impact of Tourism Economic Development Programmes: A Process and Quality Criteria Framework for Using Big Data. 2019.

[2] G. Nguyen et al., “Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey,” Artif. Intell. Rev., vol. 52, no. 1, pp. 77–124, 2019, doi: 10.1007/s10462-018-09679-z.

[3] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0197-0.

[4] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep Learning Approach for Intelligent Intrusion Detection System,” IEEE Access, vol. 7, pp. 41525–41550, 2019, doi: 10.1109/ACCESS.2019.2895334.

[5] K. Sivaraman, R. M. V. Krishnan, B. Sundarraj, and S. Sri Gowthem, “Network failure detection and diagnosis by analyzing syslog and SNS data: Applying big data analysis to network operations,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9 Special Issue 3, pp. 883–887, 2019, doi: 10.35940/ijitee. I 3187.0789S319.

[6] A. D. Dwivedi, G. Srivastava, S. Dhar, and R. Singh, “A decentralized privacy-preserving healthcare blockchain for IoT,” Sensors (Switzerland), vol. 19, no. 2, pp. 1–17, 2019, doi: 10.3390/s19020326.

[7] F. Al-Turjman, H. Zahmatkesh, and L. Mostarda, “Quantifying uncertainty in internet of medical things and big-data services using intelligence and deep learning,” IEEE Access, vol. 7, pp. 115749–115759, 2019, doi: 10.1109/ACCESS.2019.2931637.

[8] S. Kumar and M. Singh, “Big data analytics for healthcare industry: Impact, applications, and tools,” Big Data Min. Anal., vol. 2, no. 1, pp. 48–57, 2019, doi: 10.26599/BDMA.2018.9020031.

[9] L. M. Ang, K. P. Seng, G. K. Ijemaru, and A. M. Zungeru, “Deployment of IoV for Smart Cities: Applications, Architecture, and Challenges,” IEEE Access, vol. 7, pp. 6473–6492, 2019, doi: 10.1109/ACCESS.2018.2887076.

[10] B. P. L. Lau et al., “A survey of data fusion in smart city applications,” Inf. Fusion, vol. 52, no. January, pp. 357–374, 2019, doi: 10.1016/j.inffus.2019.05.004.

[11] Y. Wu et al., “Large scale incremental learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 374–382, 2019, doi: 10.1109/CVPR.2019.00046.

[12] A. Mosavi, S. Shamshirband, E. Salwana, K. wing Chau, and J. H. M. Tah, “Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning,” Eng. Appl. Comput. Fluid Mech., vol. 13, no. 1, pp. 482–492, 2019, doi: 10.1080/19942060.2019.1613448.

[13] V. Palanisamy and R. Thirunavukarasu, “Implications of big data analytics in developing healthcare frameworks – A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 4, pp. 415–425, 2019, doi: 10.1016/j.jksuci.2017.12.007.

[14] J. Sadowski, “When data is capital: Datafication, accumulation, and extraction,” Big Data Soc., vol. 6, no. 1, pp. 1–12, 2019, doi: 10.1177/2053951718820549.

[15] J. R. Saura, B. R. Herraez, and A. Reyes-Menendez, “Comparing a traditional approach for financial brand communication analysis with a big data analytics technique,” IEEE Access, vol. 7, pp. 37100–37108, 2019, doi: 10.1109/ACCESS.2019.2905301.

[16] D. Nallaperuma et al., “Online Incremental Machine Learning Platform for Big Data-Driven Smart Traffic Management,” IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4679–4690, 2019, doi: 10.1109/TITS.2019.2924883.

[17] S. Schulz, M. Becker, M. R. Groseclose, S. Schadt, and C. Hopf, “Advanced MALDI mass spectrometry imaging in pharmaceutical research and drug development,” Curr. Opin. Biotechnol., vol. 55, pp. 51–59, 2019, doi: 10.1016/j.copbio.2018.08.003.

[18] C. Shang and F. You, “Data Analytics and Machine Learning for Smart Process Manufacturing: Recent Advances and Perspectives in the Big Data Era,” Engineering, vol. 5, no. 6, pp. 1010–1016, 2019, doi: 10.1016/j.eng.2019.01.019.

[19] Y. Yu, M. Li, L. Liu, Y. Li, and J. Wang, “Clinical big data and deep learning: Applications, challenges, and future outlooks,” Big Data Min. Anal., vol. 2, no. 4, pp. 288–305, 2019, doi: 10.26599/BDMA.2019.9020007.

[20] Sulistiyanto S, Imaduddin I, Nadhiroh AY, Widoretno S, Fahmi MH, Mukhlison M, Zuhair A, Pawening RE. IoT-based model for real-time monitoring of new and renewable energy systems. EUREKA: Physics and Engineering. 2025 Mar 31(3):36-48.

[21] G. Xu, Y. Shi, X. Sun, and W. Shen, “Internet of things in marine environment monitoring: A review,” Sensors (Switzerland), vol. 19, no. 7, pp. 1–21, 2019, doi: 10.3390/s19071711.

[22] M. Aqib, R. Mehmood, A. Alzahrani, I. Katib, AL beshri, and S. M. Altuwaijri, Smarter traffic prediction using big data, in-memory computing, deep learning and gpus, vol. 19, no. 9. 2019.

[23] S. Leonelli and N. Tempini, Data Journeys in the Sciences. 2020.

[24] Sulistiyanto S, Hadits N. Helm Cerdas Pendeteksi Gas Berbasis IoT untuk Keselamatan Pekerja Tambang. Akiratech. 2025 Jun 17;2(2):40-7..

[25] Q. Song, H. Ge, J. Caverlee, and X. Hu, “Tensor completion algorithms in big data analytics,” arXiv, vol. 13, no. 1, 2017.

Downloads

Published

10/03/2025

Issue

Section

Articles

How to Cite

Perancangan Sistem Informasi Pelayanan Pengaduan Masyarakat Dinas Pemerintah Kecamatan Besuki. (2025). Journal of Science and Engineering, 1(1), 22-35. https://journal.ajbnews.com/index.php/prothon/article/view/228